skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cheraghchi, Mahdi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background: Results: To address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to e ciently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the rst stage of screening to improve the detection sensitivity. Dynamic Ct threshold adjustments mitigate dilution e ects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. Conclusion: In conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, o ers a promising solution for e cient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale. Keywords: Group testing, Pooled testing, Semiquantitative group testing, qPCR, Ct values, Viral load, COVID-19 
    more » « less
  2. Abstract BackgroundPathogenic infections pose a significant threat to global health, affecting millions of people every year and presenting substantial challenges to healthcare systems worldwide. Efficient and timely testing plays a critical role in disease control and transmission prevention. Group testing is a well-established method for reducing the number of tests needed to screen large populations when the disease prevalence is low. However, it does not fully utilize the quantitative information provided by qPCR methods, nor is it able to accommodate a wide range of pathogen loads. ResultsTo address these issues, we introduce a novel adaptive semi-quantitative group testing (SQGT) scheme to efficiently screen populations via two-stage qPCR testing. The SQGT method quantizes cycle threshold (Ct) values into multiple bins, leveraging the information from the first stage of screening to improve the detection sensitivity. DynamicCtthreshold adjustments mitigate dilution effects and enhance test accuracy. Comparisons with traditional binary outcome GT methods show that SQGT reduces the number of tests by 24% on the only complete real-world qPCR group testing dataset from Israel, while maintaining a negligible false negative rate. ConclusionIn conclusion, our adaptive SQGT approach, utilizing qPCR data and dynamic threshold adjustments, offers a promising solution for efficient population screening. With a reduction in the number of tests and minimal false negatives, SQGT holds potential to enhance disease control and testing strategies on a global scale. 
    more » « less
  3. Bojanczy, Mikolaj; Chekuri, Chandra (Ed.)
    One-way functions (OWFs) are central objects of study in cryptography and computational complexity theory. In a seminal work, Liu and Pass (FOCS 2020) proved that the average-case hardness of computing time-bounded Kolmogorov complexity is equivalent to the existence of OWFs. It remained an open problem to establish such an equivalence for the average-case hardness of some natural NP-complete problem. In this paper, we make progress on this question by studying a conditional variant of the Minimum KT-complexity Problem (MKTP), which we call McKTP, as follows. 1) First, we prove that if McKTP is average-case hard on a polynomial fraction of its instances, then there exist OWFs. 2) Then, we observe that McKTP is NP-complete under polynomial-time randomized reductions. 3) Finally, we prove that the existence of OWFs implies the nontrivial average-case hardness of McKTP. Thus the existence of OWFs is inextricably linked to the average-case hardness of this NP-complete problem. In fact, building on recently-announced results of Ren and Santhanam [Rahul Ilango et al., 2021], we show that McKTP is hard-on-average if and only if there are logspace-computable OWFs. 
    more » « less